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1 Introduction and overview

BPS black hole attractors, [1–3], due to a high degree of supersymmetry, are in some sense,

the simplest black holes one can study. Consequently, it is not surprising that much progress

in understanding the physics of black holes has come from studying these objects. The next

simplest case one could choose to study is that of non-BPS black attractors [4, 5]. Although

these solutions break supersymmetry, they seem to generically have similar near-horizon

bosonic symmetries to their BPS cousins [6]. While much can be learnt from the near

horizon behaviour, an obvious drawback is that, features of the full solution that cannot

survive the near horizon limit are beyond reach. Such features include, the existence and

properties of an interpolating solution to an asymptotic space-time, multi-centred solutions

and associated split attractor flows. Unfortunately, in the a priori absence of first order

equations, finding the full flow is challenging.1

It is known that in four dimensional, N > 2 supergravity there is a formal analytic

continuation of charges that can transform certain BPS to non-BPS solutions [7]. This

is related to the fact that, at the horizon, the corresponding solutions to the attractor

equations, are related by a sign change. For BPS attractors, one can obtain the full

interpolating solution, from the horizon to the boundary of space-time, by replacing the

1A frame work for addressing the question of the existence of the full flow in the absence of first order

equations is laid out in [5].
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charges in the attractor values of the scalars with harmonic functions [8–12]. At the level

of two derivative gravity, these solutions satisfy first order flow equations [4, 13, 14]. By

analytic continuation of the harmonic functions rather than just the charges, this procedure

can be generalised, in certain cases, to non-BPS attractors [15]. However, these cases are far

from being generic — for instance once one turns on asymptotic B-fields, which are encoded

in certain asymptotic moduli, the trick of analytically continuing the harmonic functions

does not work — another approach is needed. It has been found that non-BPS first-order

flow equations can also be found using the so-called “fake superpotential” formalism [16–

18]. Recently, the addition of nontrivial B-fields was considered in [18–20], using the fake

superpotential formalism and direct calculation, resulting in more complicated solutions

that indeed do not fit in the known analytic continuation scheme.

In this work, we develop a method to obtain non-BPS solutions from the BPS ones that

extends the results mentioned in the previous paragraph. We focus on non-BPS black holes

in four and five dimensional ungauged supergravity. For concreteness we use theories with

8 supercharges, but the core of our results can be easily applied to the theories with more

supersymmetry. We extend the simple analytic continuation of charges to an associated

conjugation of the five dimensional BPS equations that describe the full flow. Using this

scheme, we find a subclass of non-BPS solutions which, except for global constraints,

obey the five dimensional BPS equations. Consequently, we call these solutions and the

equations they obey “almost BPS”. Our scheme reduces to a sign change for the examples

with trivial B-fields, as in the known analytically continued solutions [15], and furthermore

includes the recent solutions of [18, 19] with nontrivial B-fields, as well as novel multi-centre

solutions. This generalises previous results for first order flows of single centred non-BPS

solutions [16–18], albeit from a different perspective. Furthermore, hither to mysterious

features of these solutions can be understood as a consequence of their almost BPS nature.

The main technical advantage in five dimensions is the existence of two independent

sets of BPS solutions when the base space is flat. For a more general base, only one of

these sets is BPS according to the known classification [21, 22]. The main idea we use to

construct the almost BPS solutions is to exploit the simple fact that any Gibbons-Hawking

space can be trivialised into flat space in local patches. This allows us to replace the known

BPS solution by its would-be-BPS partner on every patch. The result is a new class of

solutions that are BPS locally but not globally. In particular, they are described by first

order equations that can be solved in terms of arbitrary harmonic functions, very similar

to the BPS case.

This construction implies that our solutions are constrained to charges that can be

obtained by sign changes from BPS charge vectors, even though the full solutions are very

different. Thus, several known features of more general non-BPS solutions, such as flat

directions [19, 23–27] remain out of reach. Nevertheless, our solutions can be used as seeds

to generate new ones through known dualities. It remains an open problem to investigate

what subspace of the full non-BPS spectrum can be obtained in this way. In special cases

with enough symmetries, the most general non-BPS solution can be generated in this way,

as in [19, 20] for the case of the STU model.
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Restricting attention to solutions that can be conveniently reduced on a circle, we

obtain four dimensional non-BPS solutions characterised by arbitrary harmonic functions

that allow for some nontrivial asymptotic moduli and multiple centres. When taking the

near horizon limit, our solutions reproduce the known four dimensional non-BPS attractors.

From the five dimensional point of view, the near horizon geometry is a time-like fibration

over flat space, which locally satisfies the BPS equations presented in the next section.

This implies that the near horizon geometries of our solutions are solutions to the attractor

equations. It also allows us to construct stable multi-attractors with the same total charge

as single centre non-BPS attractors whose stability is unclear [7, 15]. The same situation

is found at the asymptotically flat region, leading to severe constraints on the form of the

mass formula.

The crucial property of being locally supersymmetric implies strong constraints on the

behaviour of our solutions in the interpolating region as well. The most important is the

existence of a first order flow for the scalars governed by the almost BPS equations. As far

as we know, by U-duality, this includes all known cases of four dimensional non-BPS first

order flows in N = 2, 4, 6, 8 theories and extends it to the multi-centre case.

This paper is organised as follows. In section 2 we give some background material on

five dimensional supergravity, the classification of its BPS solutions and its reduction to

four dimensional N = 2 supergravity. Then, in section 3 we discuss the doubling of BPS

solutions for the case of flat base and derive the almost BPS equations for a non-flat base.

Section 4 contains two particular examples that are interesting from a four dimensional

point of view, a single centre and a two centre solution. We conclude in section 5 with

some extra comments and directions for future study.

2 5D supergravity and dimensional reduction

In this section we include some background material and establish notation. First, we

briefly discuss five dimensional ungauged supergravity coupled to vector multiplets and

the classification of the supersymmetric solutions of this theory. Next, we consider the

dimensional reduction to four dimensions that yields the N = 2 supergravity we are inter-

ested in.

2.1 BPS solutions of five dimensional supergravity

We consider five dimensional ungauged supergravity coupled to nv vector multiplets. Unless

stated otherwise, we adopt the conventions of [22]. Using a positive signature metric, the

bosonic action takes the form [28]:

S =
1

2κ5

∫ √−g d5x

(

R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µX
I∂µXJ (2.1)

− 1

24
CIJKF

I
µνF

J
ρσA

K
λ ǭ

µνρσλ

)

,

where ǭµνρσλ is the completely antisymmetric Levi-Civita tensor with |ǭµνρσλ| = 1/
√−g

(the orientation will be defined below). The indices, I, J,K . . . = 1, . . . , nv, label the
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vector multiplets and CIJK is a totally symmetric constant tensor. The scalars XI satisfy

the constraint:

XIX
I = 1 , XI ≡

1

6
CIJKX

JXK , (2.2)

so that only nv − 1 of them are independent. We denote the independent scalars as, χa,

where a = 1, . . . , nv − 1. The scalar dependent coupling matrix, QIJ , has the form:

QIJ =
9

2
XIXJ − 1

2
CIJKX

K . (2.3)

For simplicity, we will restrict our attention to the case where the scalars take values in a

symmetric space. One can then use the identities:

4

3
δI(LCMPQ) = CIJKCJ ′(LMCPQ)K ′δJJ

′

δKK
′

, (2.4)

XI =
9

2
CIJKXJXK , (2.5)

where CIJK ≡ δII
′

δJJ
′

δKK
′

CI′J ′K ′ and the constraint in (2.2) was used in obtaining (2.5).

The supersymmetric solutions of this theory have been classified in [21, 22] and fall in

two distinct classes, depending on whether the vector, ǭγµǫ, constructed from the Killing

spinor, ǫ, is time-like or null. We will restrict our attention to the time-like case, in which

the BPS conditions imply that the metric is a time-like fibration over a hyper-Kähler base

space, which we briefly summarise below.

Given a hyper-Kähler 4-manifold with a metric, hmn, we choose the associated com-

plex structures, X(i), as anti-self-dual and assume for the moment that they are unique.

Given these data, the metric and gauge fields of a supersymmetric solution can be written

locally as:

ds2 = −f2(dt + ω)2 + f−1hmndx
mdxn

F I = d(XIe0) + ΛI . (2.6)

Here, e0 = f(dt + ω), the indices, m,n, . . . = 1, . . . , 4, label coordinates on the base, the

ΛI(xm) are arbitrary closed self-dual forms on the base, and f > 0, is assumed to be a

globally defined function. A positive orientation is chosen using e0 ∧ η as the volume form,

where η is a positive orientation on the base manifold.

Once the ΛI ’s are chosen, the function f and the XI are determined by solving a

Poisson equation on the base:

∆
(

f−1XI

)

=
1

12
CIJKΛJmnΛ

mnK , (2.7)

where ∆ is the Laplacian on the hyper-Kähler manifold. Finally, the one-form, ω, is

determined by solving:

fdω = G = G+ +G−, XIΛ
I = −2

3
G+ , (2.8)

where G± are self- and anti-self-dual forms on the hyper-Kähler base. These BPS solu-

tions are invariant under an SU(2) subgroup of the base space isometry group and, in
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an orthonormal basis, their respective Killing spinors satisfy γ0ǫ = iǫ. Note that if our

assumption of the uniqueness of the complex structures is not true, there is extra freedom

on the BPS solutions that can be written down, changing the above equations. This will

be seen explicitly in the following, but for the moment we continue to assume uniqueness.

In this work we are interested in solutions with a four dimensional interpretation, so

we will demand that the base space has a compact isometry along which we can perform

dimensional reduction. Under the assumption that the associated Killing vector is tri-

holomorphic (i.e. leaves the complex structures invariant), and is a symmetry of the full

solution, the base space can only be a Gibbons-Hawking space [29]. In this case the above

equations simplify enough to be solved explicitly [22]. For a Gibbons-Hawking space [30],

which is itself a fibration over a flat Euclidean base, the metric, hmn, can be written:

hmndx
mdxn = H−1

(

dψ + χidx
i
)2

+Hδijdx
idxj , (2.9)

∇× χ = ∇H. (2.10)

Here, ∇ is the standard vector derivative on the Euclidean 3-space, R
3, with coordinates

xi , i, j = 1, 2, 3, H(xi) is a harmonic function on R
3 and 0 ≤ ψ ≤ 4π. The isometry

group is SU(2) × U(1), where the U(1) is generated by the Killing vector ∂/∂ψ. We will

consider the specific examples of flat space (H = 1 or H = 1/|x|) and Taub-NUT space

(H = h0 + p0/|x|).
The complex structures associated with (2.9) are given by

X(i) =
(

dψ + χjdx
j
)

∧ dxi − 1

2
Hǫijkdx

j ∧ dxk. (2.11)

Using (2.10), one can easily see dX(i) = 0. Imposing their anti-self-duality fixes the orien-

tation of the base space so that the volume form is

Hdψ ∧ dx1 ∧ dx2 ∧ dx3. (2.12)

The complex structures (2.11) are globally defined and, in all but one case, unique. The

exception is flat space (in coordinates such that H = 1, χ = 0), in which case one can also

choose the opposite relative sign in (2.11) and the forms, X(i), remain closed. It follows

that for flat space there are two triplets of complex structures: one self-dual and one anti-

self-dual. This observation implies an enlargement of the set of BPS solutions in that case,

to be discussed in section 3.

The explicit BPS solution for a Gibbons-Hawking base can be described in terms of H

and an additional 2nv+1 harmonic functions [22]. The self-dual forms ΛI , defined in (2.6),

can be written as:

ΛI = −1

2
(dψ + χ) ∧ (W I

j)dx
j − 1

4
Hǫijk(W

I
k)dx

i ∧ dxj , W I
i = ∂i

(

KI

H

)

, (2.13)

where the KI are arbitrary harmonic functions related to the magnetic charges of the
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solution. Given these functions, the rest of the solution is found by solving

f−1XI =
1

24
H−1CIJKK

JKK + LI , (2.14)

ω5 = − 1

48
H−2CIJKK

IKJKK − 3

4
H−1LIK

I +M (2.15)

∇× ω̂ = H∇M −M∇H +
3

4
(LI∇KI −KI∇LI) . (2.16)

Here, the one-form ω is decomposed as

ωmdx
m = ω̂idx

i + ω5(dψ + χ) , (2.17)

and LI , M are arbitrary harmonic functions associated with the electric charges and the

angular momentum along the ψ direction respectively.

2.2 4D/5D connection

In the following, we will be interested in the properties of the solutions to the four di-

mensional theory obtained by reducing the theory (2.1) on a circle. In order to make

the connection clear, we present some of the relevant formulae for this reduction follow-

ing [31, 32], but using slightly different conventions.

The relevant ansatz for the reduction is written as:

ds2 = e2φ ds2(4) + e−4φ (dψ −A0
(4))

2 ,

AI = AI(4) + CI (dψ −A0
(4)) ,

X̂I = e−2φXI , (2.18)

where ds2(4) is the four dimensional line element and the CI , X̂I will make up the four

dimensional complex scalars. Here, the coordinate along the circle, ψ, runs over 0 ≤ ψ ≤
4π. This fixes the four dimensional Newton constant: G4 = G5/4π.

Reducing the action in (2.1) along a circle [32], one obtains a four dimensional N = 2

supergravity characterised by the pre-potential:

F (Y ) = − 1

12

CIJK Y
IY JY K

Y 0
, (2.19)

where the Y A are nv + 1 complex scalar fields (A = 0, I). These scalars are also subject

to a constraint that makes one of them redundant. We solve it by working throughout in

special coordinates:

zI =
Y I

Y 0
= CI + iX̂I . (2.20)

The explicit four dimensional bosonic action that results from the reduction is [33, 34]:

S4 =
1

2κ4

∫

d4x
√−g

(

R− 2gIJ̄∂µz
I∂µz̄J +

1

2
ImNABF

A
µνF

Bµν (2.21)

−1

2
ReNABF

A
µν ∗ FBµν

)

,
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where ∗FAµν = 1
2ǫ
µνρσFAρσ with ǫ0123 = 1/

√−g. The four-dimensional gauge couplings,

NAB , are given by

NAB = F̄AB + 2 i
ImFAC ImFBD Y

CY D

ImFFE Y FY E
, (2.22)

where FA = ∂F/∂Y A , FAB = ∂2F/∂Y A∂Y B . Finally, the moduli space metric, gIJ̄ , is:

gIJ̄ =
∂

∂zI
∂

∂z̄J
K , e−K(z,z̄) =

i

12
CIJK(zI − z̄I)(zJ − z̄J)(zK − z̄K) . (2.23)

Note that there is an extra gauge multiplet in four dimensions, represented by the

zeroth index, which comes from the reduction of the five dimensional graviton supermulti-

plet. The scalars are complexified in the reduction, with the nv pseudoscalars CI coming

from the gauge fields paired with the nv physical scalars XI and the Kaluza-Klein scalar φ

as in (2.20). In string theory language, the CI are interpreted as components of the B-field

reduced to four dimensions.

In contrast to the above, finding the explicit relation between the charges of a solution

to the five dimensional theory and its four dimensional reduction can be subtle, especially

in the presence of magnetic charges. Since, in the following, we are interested in the

four dimensional interpretation, we will be dealing only with four dimensional electric and

magnetic charges, using the natural formulae:

qA ≡ (q0 , qI) =
1

4π

∫

S2

(

ImNAB ∗FB − ReNABF
B

)

, (2.24)

pA ≡ (p0 , pI) =
1

4π

∫

S2

FA , (2.25)

where the sphere encloses the region of interest.

This completes the dictionary between the solutions of (2.1) and (2.21) in the general

case. For our purposes though, we will be interested only in five dimensional solutions

that can be written as a time-like fibration over a Gibbons-Hawking base space as in (2.6)

and (2.9). Under this restriction, there are significant simplifications. In particular, the

Kaluza-Klein scalar, φ, and the four dimensional metric, are written as:

ds2(4) = −e2U (dt + ω̂i dx
i)2 + e−2Ud~x2 e−4U =

H2

f2
e−4φ = H f−3 − (H ω5)

2 . (2.26)

Moreover, the Kaluza-Klein gauge potential seen in four dimensions is given by

the expression:

A0
(4) = ω5H

2 e4U (dt + ω̂i dx
i) − χi dx

i , (2.27)

where the notation in (2.17) is used for ω. In the following, we will use the above formulae

both explicitly and implicitly, to give a four dimensional interpretation to our results. More

explicit details can be found in.2

2 Note that our tensor CIJK is related by a factor of two to the one in [32].
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3 BPS and almost BPS solutions

3.1 BPS solutions with flat base space

As noted in section 2.1, for the special case of a flat base space there is some extra freedom

in choosing the hyper-Kähler complex structures: namely they can be chosen to be either

self- or anti-self-dual. This is a result of the larger group of rotations for R
4, namely

SO(4) ≡ SU(2)L × SU(2)R. The two triplets of complex structures rotate under different

linear combinations of SU(2)R and SU(2)L.

In this special context, there is a second supersymmetric solution one can write down, in

which all the fields are left invariant under the self-dual complex structures [21]. Explicitly,

the relevant BPS conditions (2.6)–(2.8) for the flat case are modified to:

ds2 = −f2(dt + ω)2 + f−1hmndx
mdxn , (3.1)

F I = ±
(

d(XIe0) + ΛI
)

, (3.2)

XIΛ
I = −2

3
G± , (3.3)

∆
(

f−1XI

)

=
1

12
CIJKΛJmnΛ

mnK . (3.4)

Here, ΛI are self-dual forms on the base for the upper sign and anti-self-dual for the lower

sign. These pairs of BPS solutions are aligned with the two complex structures in the sense

that they are invariant under the corresponding SU(2) subgroups of the SO(4) isometry

group and, in an orthonormal basis, their respective Killing spinors satisfy γ0ǫ = ±iǫ.

Some examples of supersymmetric pairs were written down in [21], using right- and left-

invariant one-forms on S3.

An interesting property of these BPS pairs is that when reducing to four dimensions

along a circle, it is not possible to retain both of them in the BPS spectrum. This is because

any reduction ansatz can only respect one SU(2) ≡ SO(3) isometry, while the two sets of

BPS solutions respect a different SU(2) in five dimensions. Thus, choosing a particular

SU(2) to keep in the reduction, the other one is broken and all the BPS solutions aligned

with it are lost as well. Equivalently, the Killing spinors in one set of solutions are invariant

under the SU(2) that is being broken, while those of the other set are not. This means

that under the reduction, the Killing spinors in one set will be trivially reduced, but the

ones in the other set will be charged under the Kaluza-Klein U(1), violating the natural

assumption of invariance and leading to a non-BPS solution. A very similar situation was

encountered in [35, 36], where it was shown that if one considers the full Kaluza-Klein

tower, supersymmetry is recovered.

This “supersymmetry without supersymmetry” effect [36], was observed in [32, 37], in

the context of lifting to five dimensions the near horizon geometry of a four dimensional

non-BPS black hole, which can be written as a solution with flat base space. In the

particular electric case discussed there, one has ΛI = 0, ω = 0 and H = p0/r for flat base

space with a conical singularity (the coordinate ψ has a fixed range as in (2.9)). Then the

two five dimensional BPS solutions above are identical with respect to the metric and the

– 8 –
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scalars, but have opposite electric charges. The explicit solutions are described by (in our

conventions):

ds2 = −f2dt2 + f−1

(

p0

r
dxidxi +

r

p0
(dψ + p0 cos θφ)2

)

F I = ±d(fXI) ∧ dt, f−1XI = LI =
2

3

qI
r
. (3.5)

Upon reduction to four dimensions preserving the SO(3) symmetry of the directions xi,

they give the BPS and the non-BPS attractor discussed in [32, 37] for the plus and minus

sign respectively.3 From the four dimensional point of view the two solutions are related

by analytic continuation of the charges [7].

It should be noted that this observation does not affect the 4D/5D connection for BPS

solutions as described in [38, 39]. There, a Taub-NUT base that interpolates between a

five dimensional and a four dimensional solution was used to argue that the BPS index

is the same in four and five dimensions. As Taub-NUT has a unique triplet of complex

structures, there is only one BPS solution for each choice of harmonic functions. Thus, all

asymptotically Taub-NUT BPS solutions in five dimensions are mapped to asymptotically

flat BPS solutions with appropriate charges, under dimensional reduction [31]. The same

holds for any Gibbons-Hawking space except flat space.

This is explicitly seen from the asymptotically Taub-NUT extensions of the two at-

tractor solutions. The solution with the plus sign in (3.5) is compatible with the anti-self-

dual complex structures of R
4 and its asymptotically Taub-NUT extension is the BMPV

black hole [40] in the centre of Taub-NUT. In view of the anti-self-duality of the complex

structures of this base, it is a BPS solution [21]. The solution with the minus sign is

instead compatible with the self-dual complex structures of R
4. Its Taub-NUT extension

was constructed in [18], and is non-BPS. In the following we rederive this solution and

clarify the origin of its special properties, as part of a general technique of constructing

non-BPS solutions.

3.2 Almost BPS solutions

In the less restrictive case of a general Gibbons-Hawking space, one might wonder about

the fate of the two different supersymmetric solutions. This becomes especially interesting

in view of the fact that both kinds of BPS solutions with a flat base can be the near

horizon region of (not necessarily BPS) black holes embedded in a more general space,

as mentioned above. The existence of full interpolating Taub-NUT solutions for the two

attractors above, only one of which is BPS, suggests that the two different solutions might

survive as BPS/non-BPS pairs in this case.

Indeed, it is straightforward to show that even if the base is not flat, both expressions

in (3.1)–(3.3) solve the equations of motion. An outline of this calculation can be found in

appendix A. For a general base, the anti-self-duality of the hyper-Kähler structures allows

only for the one with the upper sign to be supersymmetric, whereas the other one is not.

3If the other SO(3) symmetry of R
4 is chosen in the ansatz, one ends up with the same solutions in four

dimensions, but their origins in five dimensions are interchanged.
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An intuitive picture of the relation between the two solutions can be given for a

Gibbons-Hawking base space. The base space is a U(1) bundle over R
3, so it can be

trivialised into R
4 by a suitable choice of coordinates on any local patch. One then has a

choice between self-dual or anti-self-dual complex structures on every such patch as before,

so that both expressions in (3.1)–(3.3) constitute BPS solutions.

By extending to the full base space, only the anti-self-dual structures on local patches

can be integrated to the unique global complex structures (2.11). In contrast, the local

self-dual structures can be integrated to the almost hyper-Kähler structures:

X̃(i) =
(

dψ + χjdx
j
)

∧ dxi + 1

2
Hǫijkdx

j ∧ dxk, (3.6)

that are globally defined, but not integrable: d X̃(i) 6= 0. The existence of the forms (3.6) al-

lows one to construct globally defined fields by aligning local solutions on every patch with

the appropriate restriction of these structures.4 It is then clear why both signs in (3.1) pro-

vide a solution to the equations of motion, since they can be viewed as constructed locally

from BPS solutions aligned with the forms in (3.6). The difference is that the one with the

upper signs is compatible with the global complex structures and is a global BPS solution.

The second solution fails to be supersymmetric only due to a global obstruction, providing

an example of a nonsupersymmetric solution with the peculiar property of admitting four

supercharges on local patches. In fact, it is expected to have all the local properties of a

BPS solution, which are behind most of the computational simplifications in that case. This

property, which is based on the existence of an almost hyper-Kähler structure, motivates

the nickname, “almost BPS”, for these solutions. By the same argument, our non-BPS

solutions are supersymmetric on local patches for a hyper-Kähler base more general than

Gibbons-Hawking if there exists a globally defined almost hyper-Kähler structure.

Here, we will restrict to Gibbons-Hawking base spaces for simplicity. In this case, the

almost BPS solutions can be specified through arbitrary harmonic functions as for the BPS

case, following the algorithm in [22]. First write

ω = ω5

(

dψ + χidx
i
)

+ ω̂idx
i, (3.7)

ΛI =
1

2
AIi

(

dψ + χjdx
j
)

∧ dxi − 1

4
HǫijkA

I
kdx

i ∧ dxj, (3.8)

for the one-form ω and the anti-self-dual form in (3.1), where AI are arbitrary one-forms

to be determined.

Using (2.9), closure of ΛI reduces to the relations:

∇× AI = 0 , ∇ · AI = 0 , (3.9)

which in turn imply that locally:

AI = ∇KI , (3.10)

4Note that the restriction of these forms on a patch is transformed to a constant by the coordinate

transformation that trivialises the patch. It is the noncompatibility of these local coordinate transformations

that makes the global forms not integrable. This is also what prohibits the existence of a corresponding

global Killing spinor.
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for some harmonic functions KI . The equation for f−1XI in (3.3) reduces to

∇2
(

f−1XI

)

=
1

12
HCIJK∇KJ∇KK =

1

24
H∇2

(

CIJKK
JKK

)

, (3.11)

which can be solved up to a set of arbitrary harmonic functions LI , given the KI . Here,

we will restrict to solutions of the slightly stronger relation:

∇
(

f−1XI

)

=
1

24

(

H∇
(

CIJKK
JKK

)

− CIJKK
JKK∇H

)

+ ∇LI , (3.12)

even though there might be physically interesting solutions not captured by it. The advan-

tage of this simplification is that the scalars are governed by a first order flow very similar

to the BPS one.

Finally, we find the conditions on ω5 and ω̂i. Writing out the first equation in (3.3)

using (2.8) and (3.10) one gets:

∇× ω̂ + ∇ (Hω5) =
3

2
f−1HXI∇KI (3.13)

Taking the divergence of this gives the integrability condition

∇2 (Hω5) =
3

2
∇

(

f−1HXI

)

· ∇KI , (3.14)

which can be solved up to an arbitrary harmonic function M , given the solution of (3.12).

Substituting in (3.13), the one-form ω̂ can be determined up to a total derivative (removable

by a change of coordinates).

Observe that, just like its BPS partner, an almost BPS solution is determined by

2nv + 2 harmonic functions H, KI , LI , M , which encode the charges as in section 2.1.

Note however, that if H is such that the base is flat, the BPS/almost BPS pairs degenerate

into the supersymmetric pairs in the previous section. Hence, there are no asymptotically

flat five dimensional nonsupersymmetric solutions in the class described here. On the

other hand there are solutions that asymptote to R
3×S1, allowing for an interpretation as

asymptotically flat solutions in four dimensions. That is the case of interest in this work.

In any case, the almost BPS solutions are a five dimensional analogue of the four

dimensional non-BPS black holes that can be obtained from BPS solutions through a

change of relative signs in charges (and harmonic functions). Comparing (3.11)–(3.14)

with (2.14)–(2.16), shows that they are related in that way if KI = 0, but the general case

is much more complicated than a change of relative signs, as it involves different powers of

the harmonic function H. For the special case of flat base, where one can choose H = 1,

the supersymmetric pairs are always related by such a sign change, but not if one takes

H = 1/r. The latter choice typically leads to genuinely different BPS solutions that are

not asymptotically flat, as in [21].

Interestingly, by reducing along the ∂/∂ψ direction, our solutions give rise to non-

supersymmetric solutions of four dimensional N = 2 supergravity that are more general in

several ways than the ones produced by the four dimensional sign change. In particular,

the five dimensional almost BPS solutions allow for some nontrivial moduli at infinity as
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in [18, 19] and multiple centres, unlike the simple flip of signs in four dimensions that only

works for single centre solutions without B-fields.

Despite this, our solutions are far from being the most general non-BPS black holes, as

they represent very special points in the duality orbits. For example, we cannot construct

a D0−D6 non-BPS black hole (see e.g [19, 20, 32]) using the almost BPS equations, as they

were derived from the BPS conditions, that do not allow for such an object. Moreover, it

is known that non-BPS black holes generically exhibit flat directions all along their flow in

both four and five dimensions [23–27]. This feature is also not captured by our almost BPS

solutions, since the BPS solutions have no flat directions either. Nevertheless, our solutions

can be used as seed solutions to generate new ones through four dimensional dualities. If

there are enough symmetries in a specific theory, the most general non-BPS solution can

be generated in this way, as in [19, 20] for the case of the STU model.

Unfortunately though, the explicit equations are significantly more complicated than

in the BPS case and can not be solved formally as in [22] in the most general case. Never-

theless, the full interpolating solution for any specific choice of harmonic functions should

be readily obtainable by a numerical approach, since the solution is determined through

Poisson equations which are well studied. The rest of this paper is devoted to analysing

examples of almost BPS solutions and their properties.

4 Examples of almost BPS solutions

We now turn to some examples of almost BPS solutions in Taub-NUT. We discuss a

single centred and a two centred example, both of which are very interesting from a four

dimensional perspective. In doing this, we draw on intuition from the study of the known

BPS partners of these solutions. The two cases are largely independent, but share some

common features that are generic for our solutions and follow from their construction.

The most important feature is the special structure of their near horizon and asymp-

totic regions. Indeed, since the near horizon region of our solutions can be written as a

timelike fibration over flat space, it preserves four supercharges by construction. In fact, it

preserves all eight supercharges, since the near horizon region is maximally supersymmetric

for BPS solutions. The same holds trivially for the asymptotic region in our Taub-NUT

examples up to compactness of one coordinate, as they asymptote to R
3 × S1. This prop-

erty simplifies the near horizon analysis, but more importantly implies that the mass of

these solutions takes the same form as for its BPS partner, namely that it is a simple sum

of the charges. This suggests that the constituents are marginally bound. This feature was

observed for nonsupersymmetric solutions of the STU model in four dimensions [19], some

of which can be lifted to almost BPS solutions in five dimensions, as we will show below.

Note that the BPS nature of the attractors and the asymptotic region of our solutions is

invisible from a four dimensional perspective, as explained in section 3.1.

A second, more intricate, property that also follows from the almost BPS conditions is

the existence of a first order flow for the scalars as in [16–18]. In fact the function governing

this flow can be obtained from the BPS central charge, that plays this role in the BPS case,

using our recipe. The above statements apply both to the five dimensional and the four
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dimensional theory, by dimensional reduction. In the single centred case we will show such

an explicit example, reinterpreting the known solution of [18] in our framework.

Finally, a technical point is that our equations allow for at least one extra asymptotic

modulus than what can be obtained through the four dimensional sign flip. It is described

by the constant part of the arbitrary harmonic function M in the solution of (3.14). This

constant is always left undetermined because only derivatives of Hω5 and thus M appear

in all expressions. This is a crucial difference from the BPS equation (2.16), through which

the constant part of M is related to other quantities when cancellation of Dirac-Misner

strings is imposed. From a five dimensional point of view, this constant is interpreted

as rotation of the asymptotic region, as in [18, 41]. From the point of view of the four

dimensional theory it is seen as an asymptotic B-field, which allows us to make contact

with the purely four dimensional derivation of [19] in the single centre case.

4.1 Non-BPS electric black hole

In this subsection, we make contact with the single centre solutions in [18, 19]. Since these

solutions were thoroughly examined in [18], we will be brief, emphasising general aspects.

Similar to the BMPV solution on the BPS side, we choose the harmonic functions as:

H = h0 +
p0

r
, KI = 0 , LI = lI +

2

3

qI
r
, M = −b , (4.1)

where lI , b are constants that will turn out to be related to asymptotic moduli and p0 , qI
are the Taub-NUT charge and the electric charges of the solution, as computed in the four

dimensional theory. Then (3.11)–(3.14) are solved by:

f−1XI = LI , ⇒ f−3 =
9

2
CIJKLILJLK , XI =

9

2
f2CIJKLJLK (4.2)

ω5 = − b

H
, ω̂ = 0 . (4.3)

As mentioned in section 2.1, we consider the case of a symmetric scalar manifold which

allows us to solve the scalar equation explicitly. These expressions agree with the ones

in [18] and by using (3.1),(3.8), the full non-BPS solution is reproduced, with the extra

requirement of no Dirac-Misner strings. Note that the extra rotation b is invisible in the

near horizon limit, which is described by the supersymmetric attractor in (3.5), as expected.

In the following we concentrate on the four dimensional interpretation of this solution.

When reduced to four dimensions using (2.18), the metric is the static limit

of (2.26), with

e−4U =
9

2
HCIJKLILJLK − b2 , lim

r→∞
e−4U = h0l3 − b2 = 1, (4.4)

l3 = lI lI , lI =
9

2
CIJKlJ lK , (4.5)

where we imposed four dimensional asymptotic flatness and introduced some useful nota-

tion. The four dimensional scalars (2.20) and their asymptotic values are given by:

zI =
f XI

H

(

b+ ie−2U
)

⇒ zI∞ ≡ xI + iyI =
lI

h0l3
(b+ i) . (4.6)

– 13 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
8

Thus, the parameter b is identified as an asymptotic B-field in the four dimensional theory.

The ADM mass associated to this four dimensional solution is simply found by ex-

panding the metric to first order in 1/r. The result is:

MADM =
1

4G4

(

p0l3 + 2h0 lIqI
)

=

√
1 + b2

4G4

(

(1 + b2)y3/2p0 +
2 yIqI

y3/2

)

. (4.7)

Here we replaced the lI by the four dimensional asymptotic scalars yI , using the constraint

in (4.4), as well as:

y3/2 =

√

1

6
CIJKyIyJyk, l3 =

√

1

6
CIJK lI lJ lk , (4.8)

where the second relation is an identity following from (2.4). This mass formula is simply a

sum of charges just like its BPS partner as anticipated above. It agrees with the expression

derived in [20] for the special case of the STU model.

In fact, the seed solution of [19], which was argued to have the minimal set of pa-

rameters required to describe any non-BPS black hole in the STU model up to U -duality

is dual to the above solution for the STU case. More generally, the solutions above have

half of the charges turned on and asymptotic moduli as in (4.6) for any scalar manifold.

Based on this, we expect that the most general non-BPS black hole for a four dimensional

N = 2 theory with a symmetric scalar manifold can be obtained by applying dualities on

the above solution, along the lines of [20]. For more general scalar manifolds, one can still

apply a restricted set of dualities to generate solutions, like the electric-magnetic duality

in [18], but a case by case analysis is required.

A further property of this solution is that it is described by the first order formal-

ism of [16–18], as shown explicitly in [18]. In particular, the so called fake superpotential

describing it can be obtained from the BPS central charge using our recipe. In five dimen-

sions, this amounts to a sign change for the electric charges, while the four dimensional flow

is governed by a function very similar to the central charge. It follows that all non-BPS

solutions that can be obtained by U -duality from the above solution, must also exhibit this

property. Again, for symmetric scalar manifolds this can be done explicitly, following [20].

Finally, we discuss two possible generalisations. The first is to the multi-centre case,

by adding more centres in the harmonic functions H ,LI in (4.1), generalising the base

space to multi-Taub-NUT. Upon reduction to four dimensions, these solutions seem to

agree qualitatively with the solutions of [42], though we have not considered them in

detail. A second generalisation would be to turn on the magnetic harmonic functions. It is

important to notice that in the BPS case this would be irrelevant due to the fact that only

ratios of the form KI/H appear in the BPS conditions, as observed in [43]. In contrast,

our equations (3.12)–(3.14) do not appear to have such an invariance. In this case, the

functions f , ω5 diverge at the centre5 as r−3 and r−4 respectively, making them unattractive

at first sight. However, the near horizon geometry of these solutions is described by the

5One would naively expect to find a horizon at r = 0 in these coordinates, as in all other cases treated

in this work.
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BPS solutions considered in [21] (for the minimal theory). There, a number of curvature

invariants were examined and were found to remain finite at r = 0, hinting at a regular

solution. It would be interesting to study this in more detail.

4.2 A non-BPS two centre solution

We now turn to the construction of a two centre example described by the almost BPS

partner of a supersymmetric black ring in Taub-NUT. Inspired by [41], we dimensionally

reduce this solution to obtain a two centre system in four dimensions with a non-BPS

black hole carrying D4−D2−D0 charges at one centre and a naked singularity carrying

D6 charge at the other. As in the BPS case, one can hide the naked singularity by adding

the electric black hole of the previous section at the centre of the geometry, so that the

solution becomes regular. It is worth mentioning that our solutions seem to be related

to the ones recently constructed in [44, 45]. In the latter it was argued that stationary

non-BPS solutions similar to the ones in [41] should exist. It would be interesting to study

this connection further.

Starting with the simple ring solution, we consider the set of harmonic functions:

KI =
2

h0

pI

|r − r0|
, LI = lI +

2

3

qI
|r− r0|

,

M = −b+
3

2

lIp
I

|r− r0|
, H = h0 +

p0

r
, (4.9)

where r0 = (0, 0, R). The pole in the function M is constrained by the requirement of can-

celling Dirac-Misner strings near asymptotic infinity through (3.13). We omitted the con-

stant terms in the KI for simplicity, as they do not add important features to the solution.

Unfortunately, the conditions (3.12) and (3.13) cannot be solved explicitly in the two

centre case. Thus, the solution is only known implicitly through the first order equa-

tions (3.12), (3.13) that govern the metric and the scalars and is unique given the bound-

ary conditions at infinity implied by (4.9). This brings two complications in our analysis.

First, we don’t have complete control of global issues like closed time-like curves (CTC’s)

or Dirac strings in the full geometry. We will assume that there are no such obstructions

for this solution, as for its BPS partner. In the following we verify that there are no

such problems at least asymptotically and near the horizon, by restricting the charges and

moduli accordingly. It appears that by requiring the conditions

e−4U ≥ 1 , ω̂iω̂i < e−4U , (4.10)

where the function e−4U was defined in (2.26), one can eliminate these problems for the

four dimensional solution that interests us most. As e−4U is proportional to gψψ in the full

geometry, these constraints are also natural from a five dimensional point of view.

Another implication of the difficulty in solving for the full flow is that we are not able

to find directly the relation of the distance R to the charges and moduli, since this would

be obtained by an integrability condition on (3.13) after (3.12) and (3.14) are solved. Thus

we will be forced to work indirectly, comparing with known attractor formulae in four

dimensions to determine this parameter.
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Here, we will again concentrate on the dimensionally reduced solution, for which (3.12)–

(3.14) describe a first order split attractor flow for all quantities and especially the scalars,

as in the BPS case. Explicitly, the metric of the four dimensional solution is as in (2.26),

whereas the scalars (and their asymptotic values) and field strengths are (assume that the

scalars take values in a symmetric space for simplicity):

zI = − f

H
XI

(

H ω5 − ie−2U
)

+
1

2
KI ⇒ zI∞ ≡ xI + i yI =

b lI

h0 l3
(1 + i) , (4.11)

F I(4) = −d
[(

XIf(1 +H2ω2
5 e

4U ) +
1

2
KIH2ω5e

4U

)

(dt+ ω̂)

]

+
1

4

(

KI∇kH −H∇kK
I
)

εijkdx
i ∧ dxj , (4.12)

and F 0 = dA0, with A0 as in (2.27). Note that the asymptotic scalars are as in the single

centre case, but they can be generalised by adding constant terms in the harmonic functions

KI .

We now discuss the behaviour of the solution near infinity and the horizon. This will

enable us to calculate the mass from asymptotic data and the entropy through the horizon

area of the black ring. Consider first the limit r → ∞, so that all the harmonic functions

can be approximated by powers of 1/r. Then, the solutions of (3.12),(3.14) up to first

order in that expansion are:

f−1XI ≃ LI ⇒ Hω5 ≃ 3

2

lIp
I

r
+M = −b+

3 lIp
I

r
, (4.13)

lim
r→∞

e−2U =
√

h0l3 − b2 = 1 (4.14)

and the asymptotic solution reduces to the one in the single centre case with the addition

of magnetic charges. Note that we imposed the same constraint on the moduli. We will

use the definitions in (4.5) in the following. The mass of the four dimensional two centre

solution is found again by expanding e−2U , with the result:

MADM =
1

4G4

(

l3p0 + 2h0 lIqI + 6blIp
I
)

=

√
1 + b2

4G4

(

(1 + b2)y3/2p0 +
2 yIqI

y3/2
+

6b

y3/2
yIp

I

)

, (4.15)

where we wrote everything in terms of the asymptotic moduli and we defined yI =
1
6CIJK y

J yK . We observe again that it is a marginal sum of charges, as expected, im-

plying that there is no binding energy between the constituents of the system. We will

have more to say on this when we consider the distance between the two centres.

Following [41], we also compute the ADM momentum along the fifth direction, identi-

fied as electric Kaluza-Klein charge after dimensional reduction:

PADM = − 1

16π G5

∫

dψ̄ dΩ2 r
2 ∂r ht̄ψ̄

=
π

G5

[

−2 b̃

l
lIqI +

b̃2

h0
p0 − 3√

1 + b2
lIp

I

(

1 + b̃2
(

1 +
1

2
l2

))

]

, (4.16)
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where hµν = gµν − ηµν and the t̄ , ψ̄ coordinates are related to t , ψ by a Lorentz boost, so

that limr→∞ g t̄ψ̄ = η t̄ψ̄, as in [41]. We also set b̃ ≡ b/
√
h0l3 = b/

√
1 + b2, in view of (4.14).

In four dimensions, the charge associated to the A0 gauge field differs from this result,

as it is defined through the electric-magnetic dual of the corresponding field strength, as

in (2.24). The charges of our four dimensional solution, as computed from (2.24)–(2.25) are:

qA =

(

−3 lIp
I

2h0
,−qI

)

, pA = (p0 , pI) , (4.17)

where the qI , p
I are the ones appearing in (4.9). Note that the charge q0 is proportional

to the pole of the function M , as would be naively expected.

As a final remark on the asymptotic properties of this solution, it is important to

emphasise that the electric charges in five dimensions are not equal to the four dimensional

ones, as has been observed in the BPS case [22, 31, 43]. As can be easily checked, the

five dimensional electric charges are shifted with respect to the qI by a factor proportional

to bCIJK l
JpK coming from the Chern-Simons term. It would be interesting to analyse

the implications of this inconspicuous moduli dependent shift on both the macroscopic

supergravity solutions and the microscopic counting of the entropy for the black ring.

Now, we turn to the near horizon region of the ring, taking the limit r → r0. Fortu-

nately, the near horizon region is identical to the one of the BPS solution, as explained

above, so that most results of [22, 41] carry over by simply replacing pI → H0 p
I , where

H0 = H(r0). In particular, the metric of a cross section of the horizon is:

ds2hor = L2dψ2 +

(

H0

h0

)2

p2
(

dθ2 + sin2 θdφ2
)

, (4.18)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π are spherical coordinates on the ring and 0 ≤ ψ ≤ 4π is

parametrising the S1 of Taub-NUT along which the ring is wound. The constants p, L are

given by:

p3 =
1

6
CIJKp

IpJpK , L2 =
2 (h0)2

H2
0 p

(

DIJ qI qJ + q0
)

, DIJ CJKLp
L = δIK , (4.19)

with q0 as in (4.17). Requiring that L2 > 0 eliminates CTC’s near the horizon, as in [41].

The entropy is found through the area of the horizon:

S =
A

4G5
=

π

G4
L

(

H0

h0

)2

p2 =
H0

h0

2π

G4

√

p3

2
(DIJ qI qJ + q0) , (4.20)

where we use four dimensional quantities. This expression agrees up to the prefactor

with standard entropy formulae for the prepotential (2.19) for both BPS and non-BPS

attractors obtained by analytic continuation of charges in four dimensions. As can be

easily seen from (4.11), the same holds for the scalars and gauge fields with exactly the

same prefactor. We use this to fix the parameter R, comparing6 with the expressions in [7].

We find that:

H0

h0
≡ 1 +

p0

h0R
= 1 , ⇒ R→ ∞ , (4.21)

6Note that we use the conventions of [46].
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which appears puzzling at first sight. Recalling that one finds the same result from (2.16)

for the distance between two centres carrying mutually local charges in the BPS case, it

suggests that such a divergence simply signals that the distance is not fixed, but arbitrary.

In other words, the near horizon limit imposes R→ ∞, as this quantity is not fixed in terms

of the charges that have a definite scaling as one takes the limit. We view this as more

evidence towards the marginality of the system, consistent with the mass formula derived

above. It remains an open question to solve (3.12)–(3.14) (numerically or otherwise) and

verify this result in the full solution.

A related observation is that the non-BPS attractor carrying all possible charges in

four dimensions could be unstable, hinting towards the existence of a multi-centred solution

with the same total charge and stable components [7, 15, 47]. Our solution (more precisely

the one described below, where both centres are proper attractors) is indeed a resolution

of such a system. Moreover, the marginality of its constituents seems to indicate that the

single centre attractor would be stable as well, unless this limit lies outside the boundary

of moduli space of these solutions. This brings us back to the discussion in the end of

section 4.1, since all harmonic functions would be sourced at one centre in this case. It

remains an interesting open question to study these single centre geometries both in five

and four dimensions and investigate whether they are proper attractors.

This completes our discussion of the non-BPS black ring and we now briefly sketch how

to obtain a regular solution in four dimensions. As mentioned above, reducing a Taub-NUT

solution to four dimensions produces a naked singularity carrying Kaluza-Klein magnetic

charge p0, even though the full five dimensional solution is smooth. One can construct a

regular solution by hiding the naked singularity behind the horizon of a black hole placed

at the centre of the five dimensional geometry, as in [41]. This is easily done through the

following modification on the electric harmonic functions:

LI = lI +
2

3

q
(h)
I

r
+

2

3

qI
|r− r0|

, M = −b+

(

3

2
lAp

A − q
(r)
0

)

1

r
+

q
(r)
0

|r− r0|
. (4.22)

This turns the four dimensional naked singularity into a rotating version of the black hole in

the previous section, so that both centres are regular black holes with finite area horizons.

Note that now there is an extra D0 charge present, unlike in previous examples. It can

be assigned to any of the two centres, with the constraint that the total D0 charge is

as in the simple ring solution, due to the requirement of cancelling Dirac-Misner strings

asymptotically.

All the above results remain valid after this modification, by simply replacing q0 by

q
(r)
0 in the entropy formula (4.20) for the ring and qI by qI + q

(h)
I in all other expressions.

The total electric charge q0 is the same as in (4.17). In particular, the mass formula (4.15)

remains marginal, implying that there is no interaction energy between the two centres

even after adding extra charges.

We end this section with a few comments on possible generalisations. Comparing

with the most general two centre solution in four dimensions, we see that our regular

solution has half of the charges turned on at one centre, all but one charges at the other

and asymptotic moduli as in (4.11). Restricting to symmetric scalar manifolds, we see
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that this can be dualised to arbitrary moduli and charges at one centre, as in the single

centre solution above. We are then only one charge short of the most general two centre

solution. Finally, it should be straightforward to construct multi-black rings along the lines

of [22]. These solutions would reduce to a collection of magnetically charged black holes in

four dimensions.

5 Conclusion and discussion

In this work, we have identified a systematic map from BPS to non-BPS extremal black

holes in four dimensional N = 2 supergravity with cubic prepotential, that generalises the

one known through the study of attractors. In doing this, we found that a simple algorithm

can be obtained in the five dimensional uplift of the theory, by exploiting the properties of

an extra set of BPS solutions available for a flat base space. These solutions are invariant

under a different SU(2) isometry than the one seen in four dimensions and are invisible in

the four dimensional BPS spectrum. By gluing together such local BPS solutions with flat

base, we constructed solutions with general Gibbons-Hawking base space that preserve half

of the supersymmetry locally but not globally, nicknamed almost BPS. After dimensional

reduction, the result is a class of non-BPS solutions very similar to the supersymmetric

solutions that have been studied extensively. In particular, all quantities in these solutions

satisfy first order equations, so that a number of important techniques developed for the

supersymmetric case can be applied. We have demonstrated this by constructing multi

centred solutions through arbitrary harmonic functions, following similar work on BPS

solutions [21, 22].

Our class of almost BPS solutions is as large as the BPS class, in the sense that it

involves the same number of harmonic functions, as described below (3.14). It includes

the non-BPS solutions obtained through analytic continuation of charges [7, 15, 47] and

some recent generalisations [18, 19]. Thus, it is bigger than the set of non-BPS solutions

known to date (up to U-duality), but smaller than the full class of non-BPS solutions. As

explained in section 3.2, it only includes solutions very closely related to BPS solutions,

representing special points in the four dimensional non-BPS duality orbits. However, in

cases with enough symmetry, one can use our special solutions as seeds to generate the full

orbit of non-BPS solutions, as in [20].

The defining property of our solutions, that they preserve four supercharges locally,

was also used to clarify previous observations on special properties of four dimensional

attractors [32, 37] and solutions [19]. As both the asymptotic region and the near horizon

geometry of extremal black holes can be written as a timelike fibration over flat space, our

five dimensional solutions are BPS in these regions. This crucial property implies a simple

marginal mass formula for all such solutions, as in section 4, and simplifies near horizon

considerations. In this special setting, we have analysed a known single centre example

and a new two centre solution in four dimensions that represents a resolution of a possibly

unstable non-BPS attractor [15, 47]. In both cases the mass formula suggests a marginally

bound state, and this conclusion is strengthened by the fact that the distance between the

two centres in the second case appears to be arbitrary at the level of our approximation.
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There are several directions to be investigated in the context of our solutions. First, it

seems very likely that our almost BPS conditions (3.12)–(3.14) can be rewritten in terms

of the symplectic section (Y A, FA), that is the more natural notation in four dimensions.

This could shed more light on the systematics of these solutions from a four dimensional

perspective and perhaps help towards a plausible generalisation of this construction to

arbitrary prepotentials. Moreover, such a formulation would make the properties of our

solutions under four dimensional electric magnetic duality manifest [46, 48, 49], simplifying

the construction of new solutions through dualities. Such a purely four dimensional inves-

tigation is also required to identify exactly what subspace of non-BPS solutions is spanned

by the almost BPS solutions and their duals.

More importantly, it would be very interesting to investigate whether the marginality

property of our examples is generic or not. Thus, one could distinguish the cases where

a nontrivial moduli space of this restricted class of solutions exists, if any. The general

lore is that the intricate moduli spaces of the BPS solutions should not be present, but

there could still be interesting questions to be asked for a trivial moduli space, for exam-

ple what happens at its boundary. A related, but equally challenging task would be to

study the properties of the split attractor flows described by the almost BPS conditions.

Such a program appears to require heavy use of numerical methods, in view of the extra

complications compared to the BPS case. In fact, it should be noted that such studies

could be problematic in view of the incompleteness of our set of solutions relative to the

full non-BPS spectrum.

Finally, it would be interesting to check the robustness of our trick against higher

derivative corrections. The most crucial property of the two derivative theory we used is

the hyper-Kähler structure of the base. Recently, the R2 corrected five dimensional theory

was considered in [50–52], where some explicit solutions were constructed. These were

found to be timelike fibrations over hyper-Kähler spaces, so that a possible extension of

our analytic continuation to this theory is conceivable. Such an extension could allow the

construction of non-BPS solutions in four dimensional N = 2 supergravity with higher

derivatives [12, 46, 53, 54]. We hope to return to some of these issues in the future.
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A The equations of motion

In this appendix, we outline how both expressions in (3.1)–(3.4) solve the equations of

motion. The equations of motion found by varying the action (2.1) with respect to the

metric, gauge fields and the nv−1 independent scalars χa obtained by solving the constraint

in (2.2), respectively can be written as:

Rµν +QIJF
I
µλF

J
ν
λ +QIJ∂µX

I∂νX
J − 1

6
gµνQIJF

I
κλF

Jκλ = 0 ,

d
(

QIJ ⋆ F
J
)

+
1

4
CIJKF

J ∧ FK = 0 , (A.1)
[

d(⋆dXI ) +

(

XJX
LCIKL − 1

6
CIJK

)

(F J ∧ ⋆FK + dXJ ∧ ⋆ dXK)

]

∂XI

∂χa
= 0 ,

where ⋆ is the Hodge dual in five dimensions. Here and in the following, we use the

identities:

QIJX
J =

3

2
XI , QIJ

∂XJ

∂χa
= −3

2

∂XI

∂χa
, (A.2)

which are implied by (2.2)–(2.3).

We consider a metric ansatz as in (3.1) and we take the gauge fields to be of the form

F I = ± d(fXI) ∧ (dt+ ω) ±XIG+ ΛI (A.3)

where, for the moment, the ΛI are arbitrary closed two-forms on the hyper-Kähler base

and as before, G = fdω. It is also convenient to define

JI = ±XIG+ ΛI . (A.4)

The trace-reversed Einstein equations then take the form:

XI∆(f−1XI) −
1

4

(

G2 − 2

3
QIJJ

I · JJ
)

= 0 ,

f ∇qGpq + ∇qf
(

2Gpq − 3XIJ
I
pq

)

+ 3∇qXI J
I
pq = 0 (A.5)

1

2

[

XI∆(f−1XI) −
1

4

(

G2 − 2

3
QIJJ

I · JJ
)]

δpq −G+
prG

−
q
r +QIJ J

I+
pc J

J−
q

c = 0 ,

where the identity

A±pr B±
r
q +A±qr B±

r
p =

1

2
δpq A±rtB±

rt ≡ 1

2
δpq A± · B± (A.6)

was used. Here, Latin letters are used for flat indices on the base space and the superscript

± denotes (anti-)selfdual forms on it. In order to solve these equations, we choose

XIΛ
I = ∓2

3
G± , (A.7)

as in (3.3). Taking a derivative and using that the ΛI are closed leads to:

∇qGpq = ∓f−1(∗̃G)pq∇qf − 3 (∗̃ΛI)pq∇qXI , (A.8)
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where ∗̃ denotes the Hodge dual on the base. It is then easy to show that the second and

third equations in (A.5) are satisfied if the first one is.

Similarly, the Maxwell equation in (A.1) implies the two equations:

± 3

2
d∗̃d(f−1XI) + 3XIG ∧

(

G± +
3

2
XI ∗̃ΛI

)

±CIJKXK G ∧ ΛI∓ +
1

4
CIJKΛJ ∧ ΛK = 0 , (A.9)

2 f−1df ∧
(

1

2
XIG± 1

3
CIJKX

KΛ∓J

)

+ 3XIdXJ ∧ ∗̃ΛJ

+2 f−1d(fXI) ∧
(

G± +
3

2
XI ∗̃ΛI

)

±XId∗̃G = 0 . (A.10)

When the above choices for the ΛI are imposed, a bit of algebra shows that the first

reduces to:

d ∗̃ d(f−1XI) = ∓1

6
CIJKΛJ ∧ ΛK , (A.11)

which can be shown to imply the 00 component of the Einstein equation above, while the

second is identically satisfied by using (A.8).

Finally, the scalar equation in (A.1) reduces to:
[

∆(f−1XI) ±
1

3
XPCNPIG · ΛN (A.12)

+
1

2

(

XJX
LCIKL − 1

6
CIJK

)

ΛJ · ΛK
]

∂XI

∂χa
= 0 .

For the above ΛI , the expression in brackets leads again to (A.11).
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